Second ITER International Summer School Kyushu Univ., Kasuga, Japan 2008/07/25

Integrated Modeling of Burning Plasmas

A. Fukuyama

Department of Nuclear Engineering, Kyoto University

Acknowledgments M. Honda, H. Nuga, and BPSI working group

Outline

- 1. Introduction
- 2. Integrated Modeling Code
- 3. Transport Modeling
- 4. Source Modeling
- 5. ITER Modeling
- 6. Summary

• Why needed?

- To predict the behavior of burning plasmas in tokamaks
- To develop reliable and efficient schemes to control them
- What is needed?
 - Simulation describing:
 - Whole plasma (core & edge & divertor & wall-plasma)
 - Whole discharge
 - (startup & sustainment & transients events & termination)
 - Reasonable accuracy
 - Reasonable computer resources
- How can we do?
 - Gradual increase of understanding and accuracy
 - Organized development of simulation system

- (validation by experiments)
 - (still limited)

Simulation of Tokamak Plasmas

Integrated simulation combining modeling codes interacting each other

International Integrated Modeling Activity

Integrated Modeling Activities

- Japan: BPSI (Burning Plasma Simulation Initiative)
 - Research collaboration among universities, NIFS and JAEA
 - Integrated code framework
 - New physics models
 - Advanced computing
- **EU**: **ITM-TF** (EFDA Task Force: Integrated Transport Modeling)
 - Code Platform Project: code interface, data structure
 - Data Coordination Project: verification and validation
 - Five Integrated Modeling Projects: EQ, MHD, TR, Turb., Source
- **US**: **FSP** (Fusion simulation project) presently a part of SciDAC
 - Simulation of Wave Interactions with Magnetohydrodynamics (SWIM)
 - Center for Plasma Edge Simulation (CPES)
 - Framework Application for Core-Edge Transport Simulations (FACETS)

Integrated Tokamak Simulation

Desired Features of Integrated Modeling Code

- Modular structure: for flexible extension of analyses
 - Core modules (equilibrium, transport, source, stability)
 - Various levels of models (quick, standard, precise, rigorous)
 - New physics models (easier development)
- Standard module interface: for efficient development-of modules
- Interface with experimental data: for validating physics models
- **Unified user interface**: for user-friendly environment
- Scalability in parallel processing of time consuming modules
- High portability
- Open source of core modules
- Visualization included

• Transport Analysing System for TokamaK

- Developed in Kyoto University

EQ	2D Equilibrium	Fixed/Free boundary, Toroidal rotation
TR	1D Transport	Diffusive transport, Transport models
ТХ	1D Transport	Dynamic Transport, Rotation and E_r
FP	3D Fokker-Planck	Relativistic, Bounce-averaged
WR	3D Ray tracing	EC, LH: Ray tracing, Beam tracing
WM	3D Full wave	IC: Antenna excite, Alfvén Eigenmode
DP	Wave Dispersion	Dielectric tensor, Arbitrary $f(v)$
FIT3D	NBI Physics	Birth, Orbit width, Deposition
PL	Utilities	Interface to BPSD and profile database
LIB	Libraries	Common libraries, MTX, MPI

• **TASK3D**: Extension to 3D Helical Plasmas (**NIFS and Kyoto U**)

Original Structure of the TASK code

Present Structure of the TASK code

Data Exchange Interface: BPSD

- Standard dataset: Specify data to be stored and exchanged
 - Data structure: Derived type (Fortran95): structured type

plasmaf%time			
plasmaf%nrmax			
plasmaf%nsmax			
ns)%pn			
ns)%pt			
n: n:			

- Specification of API:
 - Program interface

	Set data	<pre>bpsd_set_data(plasmaf,ierr)</pre>
e.g.	Get data	<pre>bpsd_get_data(plasmaf,ierr)</pre>
	Save data	<pre>bpsd_save(ierr)</pre>
	Load data	<pre>bpsd_load(ierr)</pre>

BPSD Standard Dataset (version 0.6)

Category	Name	EQ	TR	ТΧ	FP	WR	WM	DP
Shot data	bpsd_shot_type		_	_	_	_	_	_
Device data	bpsd_device_type	in	in	in	in			
1D equilibrium data	bpsd_equ1D_type	out	in	in	in			
2D equilibrium data	bpsd_equ2D_type	out			in	in	in	in
1D metric data	bpsd_metric1D_type	out	in	in	in			
2D metric data	bpsd_metric2D_type	out			in	in	in	in
Plasma species data	bpsd_species_type	in	in	in	in			in
Fluid plasma data	bpsd_plasmaf_type	in	out	out	i/o			in
Kinetic plasma data	bpsd_plasmak_type				out			in
Transport matrix data	bpsd_trmatrix_type		i/o					
Transport source data	bpsd_trsource_type		i/o	i/o	i/o	out	out	
Dielectric tensor data	bpsd_dielectric_type					in	in	out
Full wave field data	bpsd_wavef_type				in	out		
Ray tracing field data	bpsd_waver_type				in		out	
Beam tracing field data	bpsd_waveb_type				in		out	
User defined data	bpsd_0/1/2ddata_type	_	_	_	_	_	_	_

Equilibrium Analysis

- Shape of an axisymmetric plasma: poloidal magnetic flux $\psi(R, Z)$
- Grad-Shafranov equation

$$R\frac{\partial}{\partial R}\frac{1}{R}\frac{\partial\psi}{\partial R} + \frac{\partial^2\psi}{\partial Z^2} = -\mu_0 R^2 \frac{\mathrm{d}p(\psi)}{\mathrm{d}\psi} - F(\psi)\frac{\mathrm{d}F(\psi)}{\mathrm{d}\psi}$$

- Pressure profile: $p(\psi)$
- Poloidal current density profile: $F(\psi)$
- Plasma boundary shape (fixed boundary) or
 Poloidal coil current (free boundary)

determines the poloidal plasma shape.

• Coupling with transport analysis

- Input:
$$p(\psi), q(\psi) = F \frac{\mathrm{d}V}{\mathrm{d}\psi} \left\langle \frac{1}{R^2} \right\rangle$$

- **Output**: Metric quantities, Flux surface averaged quantities

Various Levels of Transport Modeling

Fluid model		
Diffusive transport equation	n(ρ,t), T(ρ,t)	TR
Dynamic transport equation	n(ρ,t), u (ρ,t), T(ρ,t), q (ρ,t)	тх

Kinetic model		
Bounce-averaged gyrokinetic equation	$f(\rho, \theta_{\rho}, \rho, t)$	FP
· · · · · · · · · · · · · · · · · · ·	$\boldsymbol{\rho}$	
Axisymmetric gyrokinetic equation	$f(\rho, \theta_{\rho}, \rho, \chi, t)$	
	1	
Gyrokinetic equation	$f(\rho, \theta_{\rho}, \rho, \chi, \zeta, t)$	
Full kinetic equation	$f(\rho, \theta_{\rho}, \phi_{g'}, \rho, \chi, \zeta, t)$	

Transport Modeling in the TASK code

- Diffusive transport equation: TASK/TR
 - Diffusion equation for plasma density
 - Flux-Gradient relation
 - Conventional transport analysis
- **Dynamical transport equation: TASK/TX**:
 - Continuity equation and equation of motion for plasma density
 - Flux-averaged fluid equation
 - Plasma rotation and transient phenomena
- Kinetic transport equation: TASK/FP:
 - Gyrokinetic equation for momentum distribution function
 - Bounce-averaged Fokker-Plank equation
 - Modification of momentum distribution

Diffusive Transport Equation: TASK/TR

• Transport Equation Based on Gradient-Flux Relation:

$$\boldsymbol{\Gamma} = \overleftrightarrow{M} \cdot \partial \boldsymbol{F} / \partial \rho$$

where V: Volume, ρ : Normalized radius, $V' = dV/d\rho$

- Particle transport

$$\frac{1}{V'}\frac{\partial}{\partial t}(n_s V') = -\frac{\partial}{\partial \rho} \left(V' \langle |\nabla \rho| \rangle n_s V_s - V' \langle |\nabla \rho|^2 \rangle D_s \frac{\partial n_s}{\partial \rho} \right) + S_s$$

Toroidal momentum transport

$$\frac{1}{V'}\frac{\partial}{\partial t}(n_s u_{\phi s} V') = -\frac{\partial}{\partial \rho} \left(V' \langle |\nabla \rho| \rangle n_s u_{\phi s} V_{Ms} - V' \langle |\nabla \rho|^2 \rangle n_z \mu_s \frac{\partial u_{\phi s}}{\partial \rho} \right) + M_s$$

Heat transport

$$\frac{1}{V'^{5/3}}\frac{\partial}{\partial t}\left(\frac{3}{2}n_sT_sV'^{5/3}\right) = -\frac{1}{V'}\frac{\partial}{\partial\rho}\left(V'\langle|\nabla\rho|\rangle\frac{3}{2}n_sT_sV_{Es} - V'\langle|\nabla\rho|^2\rangle n_s\chi_s\frac{\partial T_s}{\partial\rho}\right) + P_s$$

Current diffusion

$$\frac{\partial B_{\theta}}{\partial t} = \frac{\partial}{\partial \rho} \left[\frac{\eta}{F R_0 \langle R^{-2} \rangle} \frac{R_0}{\mu_0} \frac{F^2}{V'} \frac{\partial}{\partial \rho} \left(\frac{V' B_{\theta}}{F} \left\langle \frac{|\nabla \rho|^2}{R^2} \right\rangle \right) - \frac{\eta}{F R_0 \langle R^{-2} \rangle} \langle \boldsymbol{J} \cdot \boldsymbol{B} \rangle_{\text{ext}} \right]$$

Transport Processes

• Neoclassical transport

- Collisional transport in an inhomogeneous magnetic field
- Radial diffusion: usually small compared with turbulent diffusion
- Enhanced resistivity: due to trapped particles
- **Bootstrap current**: toroidal current driven by radial pressure gradient
- Ware pinch: Radial particle pinch driven by toroidal electric field
- Turbulent transport
 - Various transport models: GLF23, CDBM, Weiland, ···
- Atomic transport: charge exchange, ionization, recombination
- Radiation transport
 - Line radiation, Bremsstrahlung, Synchrotron radiation
- Parallel transport: along open magnetic field lines in SOL plasmas

Turbulent Transport Models

- **CDBM model**: current diffusive ballooning mode turbulence model
 - developed by K. Itoh et al.
 - Marginal stability condition of the current diffusive ballooning mode including turbulent transport coefficients as parameters
- **GLF23 model**: Gyro-Landau-Fluid turbulence model
 - developed by Waltz and Kinsey (GA)
 - Linear growth rate from gyro-Landau-fluid model (ITG, TEM, ETG)
 - Evaluate transport coefficients based on mixing length estimate
 - Calibrate coefficients by the linear stability code GKS
 - Calibrate coefficients by the nonlinear turbulence code GYRO
- Weiland model:
 - developed by J. Weiland
 - Based on ITG turbulence model

GLF23 Transport Model

Linear growth rate from gyro-Landau-fluid model

Calibrate coefficients by the nonlinear turbulence code GYRO

Good agreement with experimental data

CDBM Transport Model: CDBM05

• **Thermal Diffusivity** (Marginal: $\gamma = 0$) $\chi_{\rm TB} = F(s, \alpha, \kappa, \omega_{\rm E1}) \,\alpha^{3/2} \, \frac{c^2}{\omega_{\rm pe}^2} \frac{v_{\rm A}}{qR}$ **Magnetic shear** $s \equiv \frac{r}{q} \frac{\mathrm{d}q}{\mathrm{d}r}$ **Pressure gradient** $\alpha \equiv -q^2 R \frac{d\beta}{dr}$ $\kappa \equiv b/a$ **Elongation** $E \times B$ rotation shear $\omega_{\rm E1} \equiv \frac{r^2}{sv_{\rm A}} \frac{{\rm d}}{{\rm d}r} \frac{E}{rB}$ Weak and negative magnetic shear,

Shafranov shift, elongation, and $E \times B$ rotation shear reduce thermal diffusivity.

TFTR #88615 (L-mode, NBI heating)

DIII-D #78316 (L-mode, ECH and ICH heatings)

Comparison of Transport Models: ITPA Profile DB

Deviation of Stored Energy CDBM CDBM05

Modeling of Transport Barrier Formation

High β_p mode

- $R = 3 \text{ m}, a = 1.2 \text{ m}, \kappa = 1.5, B_0 = 3 \text{ T}, I_p = 1 \text{ MA}$
- one second after heating power of $P_{\rm H} = 20 \, \rm MW$ was switched on

Steady State ITB Simulation

- CDBM transport model including velocity shearing rate
- Radial electric field calculated from the radial force balance

Heat transport simulation for the ITB shot #29728 on the JT-60U Tokamak

It is generally rather difficult to reproduce ITB formation.

Time Evolution of Internal Transport Barrier

• $P_{\rm H} = 24.2 \,{\rm MW}$

• $P_{\rm H} = 20 \, {\rm MW}$

Fukuyama et al. NF (1995)

1D Dynamic Transport Code: TASK/TX

• **Dynamic Transport Equations** (TASK/TX)

M. Honda and A. Fukuyama, JCP 227 (2008) 2808

- A set of flux-surface averaged equations
- Two fluid equations for electrons and ions
 - Continuity equations
 - Equations of motion (radial, poloidal and toroidal)
 - Energy transport equations
- Maxwell's equations
- Slowing-down equations for beam ion component
- Diffusion equations for two-group neutrals
- Self-consistent description of plasma rotation and electric field
 - Equation of motion rather than transport matrix
- Quasi-neutrality is not assumed.

Model Equation of Dynamic Transport Simulation

• Flux-surface-averaged multi-fluid equations:

$$\frac{\partial n_s}{\partial t} = -\frac{1}{r}\frac{\partial}{\partial r}\left(rn_s u_{sr}\right) + S_s$$

$$\frac{\partial}{\partial t}(m_s n_s u_{sr}) = -\frac{1}{r}\frac{\partial}{\partial r}(rm_s n_s u_{sr}^2) + \frac{1}{r}m_s n_s u_{s\theta}^2 + e_s n_s (E_r + u_{s\theta}B_{\phi} - u_{s\phi}B_{\theta}) - \frac{\partial}{\partial r}n_s T_s$$

$$\frac{\partial}{\partial t}(m_s n_s u_{s\theta}) = -\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 m_s n_s u_{sr} u_{s\theta}) + e_s n_s (E_\theta - u_{sr} B_\phi) + \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^3 n_s m_s \mu_s \frac{\partial}{\partial r} \frac{u_{s\theta}}{r} \right)$$

$$+F_{s\theta}^{\rm NC} + F_{s\theta}^{\rm C} + F_{s\theta}^{\rm W} + F_{s\theta}^{\rm X} + F_{s\theta}^{\rm L}$$

$$\frac{\partial}{\partial t} \left(m_s n_s u_{s\phi} \right) = -\frac{1}{r} \frac{\partial}{\partial r} (rm_s n_s u_{sr} u_{s\phi}) + e_s n_s (E_{\phi} + u_{sr} B_{\theta}) + \frac{1}{r} \frac{\partial}{\partial r} \left(rn_s m_s \mu_s \frac{\partial}{\partial r} u_{s\phi} \right)$$
$$+ F_{s\phi}^{\rm C} + F_{s\phi}^{\rm W} + F_{s\phi}^{\rm X} + F_{s\phi}^{\rm L}$$

$$\frac{\partial}{\partial t}\frac{3}{2}n_{s}T_{s} = -\frac{1}{r}\frac{\partial}{\partial r}r\left(\frac{5}{2}u_{sr}n_{s}T_{s} - n_{s}\chi_{s}\frac{\partial}{\partial r}T_{e}\right) + e_{s}n_{s}(E_{\theta}u_{s\theta} + E_{\phi}u_{s\phi})$$
$$+P_{s}^{C} + P_{s}^{L} + P_{s}^{H}$$

Typical Ohmic Plasma Profiles at t = 50 ms

JFT-2M like plasma composed of electron and hydrogen $R = 1.3 \text{ m}, a = 0.35 \text{ m}, b = 0.4 \text{ m}, B_{\phi b} = 1.3 \text{ T}, I_p = 0.2 \text{ MA}, S_{\text{puff}} = 5.0 \times 10^{18} \text{ m}^{-2} \text{s}^{-1}$ $\gamma = 0.8, Z_{\text{eff}} = 2.0$, Fixed turbulent coefficient profile 0 0.12 1.2 0.6 0.16 -20.4 0.12 0.08 0.8 0.2 -4 0.08 0.04 0.0 E_{θ} [mV/m] 0.4 $0.04 \vdash E_{\star} [kV/m]$ [•] E_r(r) [kV/m] $B_{A}[T]$ Β₆ [T] -6 -0.2 $0.00 \begin{array}{c} 0.00 \\ 0.0 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \\$ 0.00 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.30 0.8 0.5 8 n₀₁ [10¹⁴m⁻³] 0.25 12 0.4 0.6 6 0.20 0.3 8 0.15 0.4 0.2 0.10 ⊏n_ [10²⁰m⁻³] 0.2 n₀₂ [10¹⁰m⁻³] T_ [keV] 0.1 | T; [keV] 0.05 0.00 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.045 u_{er} [m/s] u_{eθ} [km/s] u_{eo} [km/s] D_ [m²/s] $\chi_e = \chi_i = \mu_e = \mu_i [m^2/s]$ -1004 -40.030 -2003 -8-3002 -120.015 -400-16-5000.000 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.25 1.0∖j_₀ [MA/m²] 5 q 2.0 0.8 0.20 3 1.5 0.6 0.15 1.0 0.4 0.10 0.2 | u_{i0} [km/s] $0.05 - u_{ia}$ [km/s] ∶u_: [m/s] 0.5 $0.0 \underbrace{0.0}_{0.0} \underbrace{0.2}_{0.4} \underbrace{0.6}_{0.6} \underbrace{0.8}_{1.0}$ 0.00 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Density Profile Modification Due to NBI Injection

Modification of n and E_r profile depends on the direction of NBI.

Co/Counter with Ip: Density flattening/peaking

Toroidal Rotation Due to Ion Orbit Loss

Ion orbit loss near the edge region drives toroidal rotation

Ref. M. Honda et al., NF (2008) 085003

- Heat and momentum sources:
 - Alpha particle heating:
 - sensitive to fuel density and momentum distribution
 - Neutral beam injection:
 - birth profile, finite size orbit, deposition to bulk plasma
 - Waves:
 - \circ IC (~ 50 MHz): fuel ion heating, current drive, rotation drive(?)
 - $\circ~$ LH (~ $10\,GHz)$: current drive
 - \circ EC (~ 170 GHz): current drive, pre-ionization
- Particle source
 - Gas puff, recycling:
 - Neutral beam injection:
 - Pellet injection: penetration, evaporation, ionization, drift motion

• Ray tracing: EC, LH

- Spatial evolution of ray position and wave number
- Wave length λ much less than scale length L: $\lambda \ll L$
- Beam size d is sufficiently large (**Fresnel condition**): $L \ll d^2/\lambda$
- Beam tracing: EC
 - New variables: beam radius, curvature of wave equi-phase surface
- Full wave analysis: IC, AW, MHD
 - Stationary Maxwell's equation as a boundary problem
 - Wave length λ comparable with scale length L
 - Evanescent region, strong absorption, coupling with antenna
 - Not easy to include kinetic effects in inhomogeneous plasmas

Momentum Distribution Function

Fokker-Planck equation

for velocity distribution function $f(p_{\parallel}, p_{\perp}, \psi, t)$

$$\frac{\partial f}{\partial t} = E(f) + C(f) + Q(f) + L(f)$$

- E(f): Acceleration term due to DC electric field
- C(f): Coulomb collision term
- Q(f): Quasi-linear term due to wave-particle resonance
- L(f): Spatial diffusion term
- Bounce-averaged: Trapped particle effect, zero banana width
- **Relativistic**: momentum *p*, weakly relativistic collision term
- Nonlinear collision: momentum or energy conservation
- Three-dimensional: spatial diffusion (neoclassical, turbulent)

Analysis of ECCD by the TASK Code

Full wave analysis: TASK/WM

- magnetic surface coordinate: (ψ, θ, φ)
- Boundary-value problem of Maxwell's equation

$$\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon} \cdot E + \mathrm{i} \,\omega \mu_0 \mathbf{j}_{\text{ext}}$$

- Kinetic **dielectric tensor**: $\overleftarrow{\epsilon}$
 - Wave-particle resonance: $Z[(\omega n\omega_c)/k_{\parallel}v_{th}]$
 - Fast ion: Drift-kinetic

$$\left[\frac{\partial}{\partial t} + v_{\parallel} \nabla_{\parallel} + (\boldsymbol{v}_{\rm d} + \boldsymbol{v}_{\rm E}) \cdot \boldsymbol{\nabla} + \frac{e_{\alpha}}{m_{\alpha}} (v_{\parallel} E_{\parallel} + \boldsymbol{v}_{\rm d} \cdot \boldsymbol{E}) \frac{\partial}{\partial \varepsilon}\right] f_{\alpha} = 0$$

- Poloidal and toroidal mode expansion
 - Accurate estimation of k_{\parallel}
- Eigenmode analysis: **Complex eigen frequency** which maximize wave amplitude for fixed excitation proportional to electron density

Self-Consistent Wave Analysis with Modified f(v)

- Modification of velocity distribution from Maxwellian
 - Energetic ions generated by ICRF waves
 - Alpha particles generated by fusion reaction
 - Fast ions generated by NB injection
- Self-consistent wave analysis including modification of f(v)

Preliminary Results

• Tail formation by ICRF minority heating

PPERF

Quasi-linear Diffusion Momentum Distribution

PPARA

Tail Formation

Power deposition

ITER Modeling Needs

based on Dr. Campbell' talk at Cadarache, Sept 2007

- Plasma scenario development:
 - Preparation for operation
- Detailed design of auxiliary systems:
 - H&CD, Diagnostics, Fueling, ···
- Design of plasma control system:
 - Development and optimization of integrated control strategies
- Preparation of ITER operational programme:
 - End-to-end scenario development
 - Detailed pulse definition
- Experimental data evaluation:
 - Pulse characterization and physics analysis
 - Refinement of operation scenario and performance predictions

ITER Plasma Transport Simulation with CDBM05

Inductive operation

$$- I_{\rm p} = 15 \,{\rm MA}$$

- $P_{\text{NB}} = 40 \text{ MW}$ on axis
- $-\beta_{\rm N}=2.65$

• Hybrid operation

- $I_{\rm p} = 12 \,{\rm MA}$
- $P_{\text{NB}} = 33 \text{ MW}$ on axis

$$-\beta_{\rm N} = 2.68$$

Alfvén Eigenmode Analysis by TASK/WM

- Alfvén eigenmode driven by alpha particles
 - Calculated by the full wave module TASK/WM
 - Toroidal mode number: n = 1
 - TAE is stable: Eigen mode frequency = (95.95 kHz, -1.95 kHz)

Progress in the ITER Physics Basis, NF 47 (2007) S285 - S336

Simulation result by GLF23

Integrated ELM Modeling by JAEA

ELM Energy Loss Simulation by JAEA

Pedestal formation : Neoclassical transport in peripheral region and anomalous in inside region.

Stabilities of n=1-30 modes are examined in each time step.

Integrated SOL-Divertor Code by JAEA

Remaining Issues

- Pedestal temperature:
- Transport barrier formation:
- ELM physics: nonlinear behavior of ELM on transport
- Nonlinear MHD events: modeling of plasma profile change
- Energetic-ion driven phenomena:

coupling of Alfvén mode and drift waves

• Kinetic analysis of transport and MHD phenomena:

non-Maxwellian distribution

plasma-wall interaction

modeling of L/H transition

turbulence transport model

- Wave physics: full wave analysis of Bernstein waves
- Divertor plasma:
- Start up: Rapid change of equilibrium and control and so on...

Summary

- Integrated modeling of burning plasmas is indispensable for exploiting optimized operation scenario of ITER and reliable design of DEMO.
- Discussion on **international collaboration** for the development of **integrated ITER modeling** is on going.
- There are many remaining issues in constructing comprehensive integrated code; especially, L/H transition mechanism, turbulent transport model, ELM physics, nonlinear MHD events, energetic particle driven phenomena and plasma wallinteractions.
- Solving those remaining issues requires not only large-scale computer simulations but also intensive modeling efforts based on experimental observations.